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a b s t r a c t

The combination of liquid chromatography (LC) with mass spectrometry (MS) has become a mainstream
proteome analysis strategy. In LC–MS, measured masses possess their “universal” scale derived from
atomic mass tables. In contrast, the observed LC retention times (RT) are not tied to a conventional time
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scale, and depend on experimental conditions. However, RT data, being explicitly orthogonal to MS, offer
relevant information for proteome characterization. We present here a strategy for peptides RT data
standardization, based on the generation of a standard scale using retention prediction models, which
enables sharing of identification databases in the context of multi-laboratory research.

© 2008 Elsevier B.V. All rights reserved.
MT tag
ass spectrometry

. Introduction

Modern proteomics strategies often rely on the so-called “Shot-
un” approach, based on a combination of liquid chromatography
LC) and tandem mass spectrometry (MS/MS) for identifying pep-
ides in complex mixtures of digested proteins. Most often, the
hromatographic separation is merely used as a mean of reduc-
ng complexity of the mixture delivered to the mass spectrometer.
onetheless, the possibility to use both MS/MS and LC data for
eptide identification and sequencing has attracted considerable

nterest [1–7], given that chromatography provides information
bout the primary structure which is complementary to the MS
ata.

Because it can provide high-quality separation for a great vari-
ty of chemical species, reverse-phase high performance liquid
hromatography (RP-HPLC) is a preferred method for the separa-
ion of complex mixtures according to the analyte hydrophobicity
nd size. In proteomics, RP-HPLC using linear solvent gradients

ith aqueous/organic mobile phases is by far the most frequent,

nd provides superior results for proteins and peptides separation
rior to mass spectrometry (MS). In these applications, the need
o balance LC separation efficiency and MS detection requirements

∗ Corresponding author.
E-mail address: christophe.masselon@cea.fr (C.D. Masselon).

570-0232/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jchromb.2008.12.047
restricts the use of mobile phases. For the same reasons, columns
for proteomics application have to conform to strict quality crite-
ria since the weakly buffered mobile phases used can contribute to
poor peak shape if free silanols or residual metals are present. It is
therefore not surprising to see similar chromatographic methods
in most reports on proteomics, with linear gradients from water
to acetonitrile, using formic or acetic acid as ion pairing reagent,
and separations at room temperature. Nevertheless, differences in
RP-HPLC protocols published in the proteomics literature include
changes in gradient steepness, flow rate, and column parameters
such as length, diameter, particles diameter and pores size. This
results in different observed retention times (RT) measured for the
same species in different research laboratories.

A noted trend in proteome analyses is the increase in pro-
cessing of data content during LC–MS/MS experiments, which
are compiled into continuously updated databases. In particu-
lar, high throughput methodologies relying on Accurate Mass
and retention Time (AMT) measurements are increasingly gain-
ing momentum [8–11]. It is worth mentioning that identification
database compilation is a labor-, sample-, and time-consuming
task, which has to be repeated in each laboratory working

on a given proteome due to the specificity of the measured
RT. It would undoubtedly be very beneficial to translate these
databases across laboratories working on the same biological
material. In addition, there is growing awareness, in the pro-
teomics community, of the need to provide means to fairly

http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
mailto:christophe.masselon@cea.fr
dx.doi.org/10.1016/j.jchromb.2008.12.047
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ompare data obtained across laboratories working on different
nstrumental platforms and using slightly different analytical pro-
ocols.

In “Shotgun” proteomics, the collected mass spectrometric data
ossess their absolute “universal” value, derived from atomic mass
ables; but LC data, in the form of RT, are not tied to a con-
entional time scale, and may vary depending on the separation
rotocols used (gradient profile, flow rate, mobile phase compo-
ition), types of LC columns (column size, pore and particle sizes,
dsorbent type, manufacturer), as well as the HPLC instrument. This
an make the translation of identification databases problematic.
uch a translation requires that a simple relationship between RT
n different conditions be sought. In other words, there is a need for
tandardization of the RT obtained under particular experimental
onditions, i.e. the introduction of a relative RT scale independent
f the LC protocols, systems, or conditions used.

Previous efforts to implement standardization procedures for LC
ata mostly focused on ways to improve reproducibility of RT mea-
urement on a particular instrumental setup using an established
rotocol [3,12,16,27]. The main idea behind these approaches was
hat fixing the LC protocol does not prevent retention time scat-
ering between different HPLC runs for identical samples, because
f column aging or variations in mobile phase preparation, etc. . ..
herefore, standardization becomes essential for data comparison
specially for complex samples, as encountered in proteomics.
ost standardization methods to date were based on the usage

f an internal or external reference, or standard. One of the
ssumptions is that LC data scale linearly in day-to-day runs on a
iven instrument and for a given LC protocol (gradient profile, flow
ate, etc.). Within this assumption, a standard sample can be used
o obtain “relative retention time” using the following equation:
i = RTi,exp/RTst , where RTi,exp is the retention time of the sample
ompound, and RTst the retention time of the internal standard.
ote that this simple approach is limited to data obtained using the

ame LC protocol; and a change in gradient slope, for instance, may
esult in different relative retention times for the same compound.

more sophisticated standardization procedure using external
tandards was suggested by Sapirstein et al. [12] who proposed to
se as standards several selected peaks from a specific protein sam-
le which was analyzed before and after the sample of interest. The
Ts of these peaks were then used as anchor points in a piecewise
alibration algorithm to normalize the chromatograms of samples
un in the interval between two of the standards. The proposed nor-
alization algorithm demonstrated a fivefold improvement in the

recision of chromatographic data over a period of several months
f data collection. In another work, Petritis et al. [3], have proposed
o use a Genetic Algorithm for normalization, which was set to
ptimize two variables of a linear equation, y = ax + b. The variable
normalized the gradient slope, and the variable b normalized the
C run start time (dead volumes, delay time, etc.). The optimization
f these variables was performed for each separation and the
ormalization of RT into a 0–1 range and was based on 6 peptides
hosen as calibration standard which were specific for the pro-
eomes under study. Over the course of many experiments, the RT
ormalized using this procedure deviated from the mean by about
% for the identified peptides. It is assumed that LC conditions in
hese experiments were the same or at least similar. In summary,
revious efforts dealing with peptide RT standardization ranged
rom very simple to highly sophisticated. It is of particular signif-
cance that all these attempts were limited in scope to the effect of
n unwanted change in LC separation on RT and offered time scale

ied up to specific calibration standards separated under fixed LC
onditions. In addition, most authors referred, at least implicitly,
o a linear relationship between the measured RT [3,8,12,16,27].

When expanding the scope of standardization methods to delib-
rate changes in separation conditions, the first problem one is
r. B 877 (2009) 433–440

faced with is the question of the reference: could one measured
retention time constitute a reliable reference for all further mea-
surements, calibrations and alignments? When comparing two or
more runs obtained under identical or similar LC conditions, the
choice is not so crucial. However, when multiple datasets acquired
under variable conditions are to be brought to the same scale, it
becomes important to carefully choose what to align with. It is clear
that simply choosing an experimental dataset as a reference is not
only arbitrary, but risky, since this particular dataset can be prone
to errors in RT estimations. One way to deal with this issue has
been independently proposed by McIntosh and co-workers [8] and
by us [13]: it consists in the conversion of experimental RT values
into a scale corresponding to an intrinsic property of the peptide
sequence.

McIntosh et al. suggestion was based on linking peptide LC data
with their predicted hydrophobicity values. Using peptides iden-
tified with high confidence, they estimated the parameters of a
linear equation relating hydrophobicities with RT for a particu-
lar experiment. The RT normalization was performed using the
Sequence Specific Retention Calculator (SSRCalc) [4], an RT pre-
diction algorithm. In the underlying model of SSRCalc, peptides
relative hydrophobicities are assumed to be proportional to RT.
These authors claimed the independence of normalized RT on
the separation conditions (e.g. the gradient slopes) to combine
data from multiple different LC configurations into a single AMT
database.

In the present work, we assess the feasibility of LC data stan-
dardization using a normalized RT scale tied up with aminoacid
interaction energies, using a model introduced by Gorshkov et
al [14]. This model of peptide separation is based on the Liquid
Chromatography at Critical Conditions applied to biomolecules
(BioLCCC) [6–7,15]. It takes into account exclusion effects during
peptide separation and the corresponding normalized RT scale is
considered sequence specific and generally independent of the
LC protocols. Due to the fact that only a few phenomenological
parameters are used in the model (determined from the number
of aminoacid residues and C- and N- terminal groups) it can be
easily adapted for a large variety of solid and mobile phases.

The key issue of RT standardization using predicted proper-
ties of peptide sequences is the assumption of linear correlation
between experimental retention times acquired under different
separation conditions. In the present work, following previous evi-
dence by Casal et al [16], we tested this assumption for a range
of experimental parameters such as columns parameters, mobile
phase compositions and gradient slope typically used in proteomics
experiments [17,18].

Finally, we demonstrate an approach for standardization of pep-
tide RT by conversion of measured values to a standard scale,
independent of the instrument or method used. While any of the
sequence-dependent RT prediction algorithms [3–4,6–7,19–21] can
be used for the purpose of this work, we have selected the additive
model pioneered by Meek [22] and recently refined by Krokhin et
al. [4], and the BioLCCC model proposed by Gorshkov et al [6]. Both
models performed equally well.

2. Experimental

Cytochrome c digest and 6 protein digest were purchased from
Dionex/LCPacking (Dionex, Amsterdam, Netherlands) and used as
recommended. After a careful analysis of MS/MS data, we found
that the molecular structures of two peptides differed from the

sequences specified in the Dionex data sheet: IFVQKCAQCHTVEK
should be designated correctly as CAQCHTVERL + heme, and
KGEREDLIAYLK as GEREDLIAYLKK. The Cytochrome c peptides
used as retention time calibrants are recapitulated in Table 3.
The 6 protein digest standard includes Cytochrome c, lysozyme,
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lcohol-dehydrogenase, bovine serum albumin, apo-transferrin,
nd beta-galactosidase. The samples were injected at concentra-
ions of 200–500 fM/�l.

Peptides mixtures were separated on an “Ultimate 3000” nano-
PLC system (Dionex, Amsterdam, Netherlands) coupled to a
ybrid linear ion trap - Fourier transform ion cyclotron resonance
ass spectrometer LTQ-FT (ThermoFisher Scientific, Bremen, Ger-
any). The mobile phases for gradient HPLC experiments were (A)

CN/water/formic acid (2:98:0.1, v/v) and (B) ACN/water/formic
cid (80:20:0.08, v/v). All solvents were of HPLC purity and were
urchased from Merck, Darmstadt, Germany (acetonitrile) or VWR

nternational, London, England (formic acid).
The columns used throughout this work are listed in Table 1. The

olumn equilibration time in nano-HPLC experiments was set to
5–35 min, shorter re-equilibration times resulting in lower repro-
ucibility for the retention of hydrophilic peptides. With such a
rolonged equilibration, the precision of retention for hydrophilic
eptides in all experiments was within a few seconds.

Identification of peptides from the 6 protein digest was per-
ormed against the SwissProt database using Mascot software
Matrix Science Ltd.). Only identifications pointing to proteins
nown to be in the mixture and having Mascot scores above the
dentity threshold (p < 0.05) were considered for evaluation of the
alibration procedure.

The in-house developed software package “Theoretical Chro-
atograph: BioLCCC/MS-MS” [23] was used to calculate retention

imes for the sequences found and scored by Mascot. The detailed
ackground and basic equations behind the BioLCCC model are
iven in earlier publications [6–7,15]. The “Theoretical Chromato-
raph: BioLCCC/MS-MS” allows prediction of retention times based
n peptide primary structures and the RP-HPLC conditions used.
his software is available online at http://biolccc.mhost.ru/. The
ublicly available 3.0 version of Sequence Specific Retention Cal-
ulator (SSRCalc) developed at Manitoba Centre for Proteomics
http://hs2.proteome.ca/SSRCalc/SSRCalc.html) was used for com-
arison. In the SSRCalc algorithm [4,24], the peptide retention times
ere calculated using a linear equation RT = a + b × Hydrophobicity,
here a and b are constants related to gradient delay time and slope,

espectively.

. Results and discussion

.1. Correlation of RP-HPLC data for peptides separated under
ifferent experimental conditions

.1.1. RP-HPLC data linearity concept
The main assumption in RT standardization is that LC data are

inearly correlated within a wide range of experimental parame-

ers (i.e. different separation conditions, columns, mobile and/or
olid phases). Needless to say, this linear correlation is established
or data generated on the same LC system under the same con-
itions in different experiments. The LC data linearity concept
which is familiar in the case of separations of low molecular weight

able 1
pecifications of columns used in this study.

Name Supplier ID �m Colum

. PepMap LC Packings 75 15
I. PepMap LC Packings 75 25
II. AtlantisC18 Waters 75 15
V. PepMap LC Packings 75 15
. PLRP-S LC Packings 75 15
I. Chromolith Merck 100 15
II. Gemini Phenomenex 100 15
III. Gemini Phenomenex 75 15

X. Proteo Phenomenex 75 15
. Jupiter Phenomenex 75 15
r. B 877 (2009) 433–440 435

compounds) can be considered a direct consequence of the mecha-
nism behind biomacromolecules separation in a gradient RP-HPLC
[6,7].

In case linearity is preserved, the measured RTs can be trans-
ferred to a conventional time scale where a given peptide will have
a definite RT. The relationship between the RTX and RT′

X measured
for peptide X under different conditions can be expressed as:

RTX = ˛RT′
X + ˇ (1)

in which the coefficients ˛ and ˇ are defined by the experimental
parameters. A similar concept been described by Petritis, et al. [3]
who used a genetic algorithm to optimize a linear equation of RT
normalization to generate accurate mass and time tags (AMT) pep-
tide databases. We extended their assumption beyond the scope of
the same LC system, separation conditions, and column parame-
ters; and investigated the changes in peptides RT for a variety of LC
conditions commonly employed in proteomics studies.

In the present work we initially performed a series of system-
atic experiments using commercially available mixture of standard
protein digests to test the linearity assumption. The influence of col-
umn properties (C18 phase, length, and internal diameter) and other
LC parameters such as gradient slope, flow rate has been evaluated.
The linearity was tested by plotting RT measured in one experiment
versus RT for the same mixture measured in other experiments. The
resulted plots were fitted by a linear equation and the Pearson coef-
ficient was used as a measure of data correlation. We arbitrarily
considered data with R2 > 0.95 as highly correlated and R2 < 0.8 as
showing poor correlation; and deliberately limited the study to lin-
ear gradients of water/acetonitrile with formic acid as ion pairing
reagent at room temperature using C18 as a stationary phase. This
range of parameters covers a very broad cross-section of proteomics
applications.

3.1.2. Effect of column parameters
Reversed-phase columns used in standard proteomics experi-

ments can differ in terms of supplier (commercial/home-made),
column dimension (i.d., length), type of absorbent (mono-
lith/particles), structure of stationary phase (particle size, pore
size). We selected an assortment of ten columns with characteris-
tics encompassing all these variables (see Table 1). For all selected
columns, a linear 30 min gradient of 0–50%B was used (Fig. 1). In
addition, some columns were tested with longer gradient, specifi-
cally, 0–35%B in 120 min, in order to test the linearity for different
gradient durations (vide infra) (Fig. 2).

Results are presented in the form of a multi-correlation matrix
to visualize RT covariance across all columns as shown in Fig. 1A.
This matrix arrangement allows the display of all conditions with-

out the bias due to selecting a particular column as a reference. The
matrix of Pearson correlation coefficients is depicted in a cell plot
Fig. 1B. Pearson coefficients were better than 0.982 for all column
pairs; in other words, RT on a particular column were predicted at
least at 96% by RT on the other column. High values of R2 confirm

n length cm Particle size �m Pore size A Phase

3 100 C18
3 100 C18
3.5 110 C18
5 100 C18
5 300 C18
– 110 C18 (Monolith)
3 100 C18
3 100 C18
4 100 C12
3 300 C18

http://biolccc.mhost.ru/
http://hs2.proteome.ca/SSRCalc/SSRCalc.html
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ig. 1. (A) Scatterplot matrix illustrating the linearity between RT for 12 peptide
orrelations between LC data represented in the scatterplot matrix. The worse Pearso
ere still better than 0.98. These results were obtained for the 10 different columns

ample: 500 fmol Cytochrome c digest.

hat a linear regression can be applied to translate RT across
olumns provided that the retention mechanism is conserved. This
s in agreement with the linear solvent strength model proposed
arlier by Snyder, et al. [25]. It is worth pointing out that slight
electivity changes during the separation do not exaggeratedly
ffect the overall correlation because they are limited to closely
luting peaks when working within the range of parameters
hat are typical for proteomics applications. For instance, in
omparison of particulate columns with micro porous monolithic

ilica column, peptides TGPNLHGLFGR and MIFAGIK exhibited a
witch in retention (i.e. change in selectivity), while the Pearson
oefficient still held above 0.998. We also found that the linearity
s robust to a change in the type of stationary phases, where
electivity is expected to change (C18 × C12, R ≈ 0.992). Hence,

ig. 2. (A) Scatterplot matrix representing the linearity between RT for 12 peptides of Cy
orresponding to gradient slopes of 1.7%B/min and 0.3%B/min, respectively. (B) Cell plot re
atrix. RT obtained on both gradients correlated with each other, even across columns, w
ytochrome c obtained on various columns. (B) Cell plot representing the Pearson
elation with the other columns was found for column V. However, these coefficients
ibed in Table 1 and the following LC gradient profile: 0–50%B in 30 min, 300 nl/min.

our data convincingly confirm that for columns typically used
in proteomics experiments, the linear correlation hypothesis is
valid.

3.1.3. Effect of mobile phase
For the evaluation of the effect of mobile phase on experimen-

tal RT, we focused mainly on the mobile phase gradient slope
and the flow rate. In doing so, we restricted the choice of mobile
phase composition to water/acetonitrile with formic acid (pH∼3)

as ion pairing reagent, which covers a broad range of proteomics
applications. Like in experiments described above, we recorded
RT of Cytochrome c peptides obtained under variable conditions
and plotted the linear correlation between the data obtained (see
Fig. 2A).

tochrome c obtained on 6 selected columns using gradients of 30 min and 120 min,
presenting the Pearson correlations between LC data represented in the scatterplot
ith Pearson coefficients greater than, 0.984. Sample: 500 fmol Cytochrome c digest.
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Table 2
R2 values in the correlation between experimental data measured for various gra-
dient slopes and flow rates. Reference: PepMap (#1 in Table 1), under conditions of
30 min linear gradient (1.7%B/min), with 12 h of column equilibration. LC conditions
are indicated in Fig. 2. Sample: 500 fmol Cytochrome c digest.

Gradient time
[min]

Gradient slope
[%B/min]

R2 Flow-rate
[nl/min]

R2

15 3.3 0.995 300 0.993
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30 1.7 0.995 500 0.992
60 0.8 0.995 700 0.989
20 0.3 0.995 900 0.988
60 0.1 0.987 3000 0.978

Fig. 2 shows the Pearson correlations between data obtained on
selected columns using two different gradients in the form of a
ulti-correlation matrix. The gradients in these tests were 30 min

nd 120 min, corresponding to gradient slopes of 1.7%B/min and
.3%B/min, respectively. Excellent correlations were obtained with
2 values ranging from 0.994 to 0.998 for all columns under both
radient slopes (Fig. 2B).

In subsequent experiment, we selected the PepMap column
I (Table 1) to systematically test a broader range of gradient
lopes. For this column we obtained correlations between data in
range of R2 ≈ 0.9880–0.9997 when gradient slope varied from 0.1

o 3.3%B/min as shown in Table 2. Even for the longest run used
duration of 6 hrs corresponding to 0.1%B/min gradient slope); the
orrelation was still as high as R ≈ 0.987. The impact of changing
he gradient slope, together with the effect of flow rate, is fur-
her illustrated in the results presented in Fig. 3. Because a linear
orrelation between RT obtained on any column and the stan-
ard PepMap column was observed previously (see above), we
onclude that the present results are relevant to other columns
s well. As can be seen in Fig. 3, a change in the gradient slope
ed to a change in the linear data correlation slope, whereas

change in the flow rate changed the intercept of the linear
t. In all cases, a high correlation coefficient was consistently
btained.

In conclusion, it appeared from these experiments that, within
quite broad range of column properties and gradient param-

ters, the assumption of linear correlation of RT is valid and a
imple linear regression is sufficient to translate RT between con-
itions.
.2. Toward a standard retention time scale

The above mentioned results demonstrate that there is a linear
orrelation of RT data across a range of separation conditions, col-
mn types, and LC protocols typical for proteomic studies. The high

ig. 3. Effects of the gradient slope and flow rate on the linear fit between corre-
ponding RT data. The gradients were 30 min and 60 min, corresponding to gradient
lopes of 1.7%B/min and 0.8%B/min, respectively. Sample: 500 fmol Cytochrome c
igest.
r. B 877 (2009) 433–440 437

linear correlation with R2 in a range between 0.98 and 0.99 provides
the basis to introduce a standardized RT scale invariant across LC
platforms, protocols, and conditions within the framework of the
previously stated parameters.

The second issue to address is the choice of a suitable reference.
While in practice, any data obtained under specified LC parameters
and setup could be used, we would like to point out that the quality
of the normalization is linked to the choice of the reference: this
means that, any error made in the determination of the reference
RT will propagate to all the data standardized using this reference.
Moreover, the reference dataset could never be exactly reproduced
even on the same system using the same separation parameters
because of inherent measurement errors.

To circumvent the above mentioned issues, one attractive option
is to tie up the measured RT to an intrinsic property of the peptides
being measured [8,13]. One possible approach for the RT normaliza-
tion, shown schematically in Fig. 4, would be the following: once the
linear correlation between experimental LC data is established, one
can choose a simple peptide mixture (standard) and predict their
RT under specified LC conditions as “standard LC protocol” using
RT prediction software. These predicted RT for the standard will be
the reference data, RTpred

ref,i
. It is worth mentioning that the prediction

software will generate the exact same RT for the reference peptides
anywhere and anytime. These RTpred

ref,i
can be further normalized by

dividing all reference RT by e.g. the time for the Nth-peptide from
the mixture with the largest predicted RT, RTpred

ref,N
:

RTnorm
ref,i =

RTpred
ref,i

RTpred
ref,N

(2)

For normalization of any dataset, one can add the standard peptides
into the sample and analyze the mixture under any chromato-
graphic conditions within the linearity range. Alternatively, the
standard can be analyzed before (and/or after) the sample under
identical conditions. The latter is sometimes preferable as the sam-
ple mixture may be complex and not all standard peptides can be
separated from peptides in the sample. In the subsequent step, the
experimental values obtained for the standards (RTexp

ref,i
) are plotted

versus the normalized reference (RTnorm
ref,i ) and the resulting curve is

fitted using a linear equation:

RTnorm
ref,i = aRTexp

ref,i
+ b (3)

The a and b coefficients obtained from the fit are then used to
convert the experimental RT of the sample peptides into RT in a
common time scale independent of the particular LC conditions
and/or instrument. As for the standard mixture, we suggest, fol-
lowing van Midwoud et al. [26], a Cytochrome c digest, which is
commercially available and quite inexpensive. The peptides in this
digest cover a wide range of retention times. The only requirement
here is that RT databases have to be generated using LC conditions
within the linearity range. For example, using different ion-paring
agents to generate databases for RT of peptides having different
end-groups may not be acceptable.

In the present study we utilized a RT prediction program
based on the BioLCCC model. Fig. 5 shows an example of corre-
lation between the BioLCCC-predicted RT and experimental times
for selected peptides from a Cytochrome c digest normalized to
RTBioLCCC

CYC12 , the 12th Cytochrome C peptide GITWGEETLMEYLENPK.
The correlation coefficient R2 of 0.991 in this prediction is com-

parable with the correlation between experimental data obtained
under different LC protocols and conditions in this work. Typical
separation conditions were selected as “standard LC protocol”: col-
umn 75 �m I.D. × 15 cm; particle size of 3 �m; pore size of 100 A;
mobile phase (A) water/ACN (98:2), 0.1% Formic acid, (B) water/ACN
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Fig. 4. Scheme of the procedure for normalization of LC data into the standard time scale based on the predicted RT. Initially, the reference RT scale is generated using an
appropriate sequence-dependent RT prediction model. This time scale is based on the predicted RT of a standard mixture contained N known sequences separated under
r ard pe
s fit be
u in th
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c
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e

F
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eference LC conditions. The time scale is then normalized to the RT of the Nth stand
ample under study and this normalized time scale are determined using the linear
sed for the sample analysis and the corresponding normalized RTs of the standard
nder study can then be converted into the normalized scale.
20:80), 0.08% Formic acid; gradient 0–50%B in 60 min; sample con-
entration of 1 pmol/�l; and injection volume of 1 �l. Peptides 3,
, 9, and 12 from Cytochrome c digest standard were used as a ref-
rence peptide mixture to determine the calibration coefficients a

ig. 5. Correlation between normalized retention times for peptides from
ytochrome c digest predicted by BioLCCC model and obtained experimentally. The
C protocol used in the model and to obtained experimental data was: Dionex’s
epMap C18 column (75 �m ID, 150 mm long, 3 �m particles and 100 A pores),
–50%B linear gradient over a 60 min period. This LC protocol was selected in this
ork as a reference LC protocol to generate normalized retention time scale.
ptide for generality. The coefficients for translation between experimental RT of the
tween the experimental RT of the standard peptides separated under LC conditions
e normalized RT scale. Using these coefficients all experimental RTs for the sample

and b, according to the following equation:

RTBioLCCC
ref,i

RTBioLCCC
CYC12

= aRTexp
ref,i

+ b (4)

Finally, by using a and b coefficients, experimental RT for the rest
of the standard peptides were normalized according to Eq. (3). Note
that in case some peptide from experimental sample elutes at a later
time than the 12th Cytochrome C peptide, its normalized RT could
be more than 1. However, this does not affect the generality of the
method. Table 3 shows the results of normalization of experimental
data for Cytochrome c digest obtained under different experimental
conditions (specifically, different gradient profiles). We found that
for these data the standard deviation between normalized RT does
not exceed 1.6%.

The suggested normalization procedure can also be realized
using other RT prediction tools. One of the widely used RT cal-
culator is the publicly available 3.0 version of Sequence Specific
Retention Calculator (SSRCalc) (http://hs2.proteome.ca/SSRCalc/
SSRCalc.html). In Table 4, we compared the results of normalization
for two prototype LC databases generated for a 6 protein standard

digest using both BioLCCC model and SSRCalc algorithm. We can
see from this Table that both RT prediction programs exhibited very
close normalization results. In the time scales generated using RT
prediction models, the standard deviation of the normalized RT for
the same peptides separated under different HPLC conditions was
in the range of 0.9–1.2%.

http://hs2.proteome.ca/SSRCalc/SSRCalc.html
http://hs2.proteome.ca/SSRCalc/SSRCalc.html
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Table 3
Results of a self-consistency test using the normalized RT scale generated using Cytochrome c digest as a standard mixture and the reference LC protocol described in the
text. The standard scale was generated using the sequence-dependent RT prediction algorithm based on the BioLCCC model. Experimental data for Cytochrome c digest were
obtained using different LC gradient slopes. The average accuracy of normalized data was ∼1.6%. The four shaded peptides were used as internal calibrants, and the others to
evaluate the calibration error.

Table 4
An example of LC data from a 6 protein mixture AMT database prototype with experimental RT converted into normalized RT scale using the procedure described in this
work and depicted in Fig. 4. Two different sequence-dependent RT prediction algorithms were used to generate the normalized scale, BioLCCC and SSRCalc.

SEQUENCE PROTEIN Mascot score RTexp min RT norm BioLCCC RT norm SSRCalc

K.IGDYAGIK.W ADH1 Yeast 64 23.95 0,526 0,526
K.EKDIVGAVLK.A ADH1 Yeast 42 27.75 0.590 0.590
K.VVGLSTLPEIYEK.M ADH1 Yeast 81 40.56 0.807 0.805
K.TCVADESHAGCEK.S + 2 Carboxymethyl (C) ALBU BOVIN 72 15.22 0.378 0.379
R.LCVLHEK.T + Carboxymethyl (C) ALBU BOVIN 42 20.92 0.475 0.475
K.CCTESLVNR.R + 2 Carboxymethyl (C) ALBU BOVIN 63 24.94 0.543 0.542
K.YLYEIAR.R ALBU BOVIN 45 30.47 0.636 0.635
K.DDPHACYSTVFDK.L + Carboxymethyl (C) ALBU BOVIN 43 31.36 0.651 0.650
K.LGEYGFQNALIVR.Y ALBU BOVIN 94 41.36 0.820 0.818
R.FNDDFSR.A BGAL ECOLI 48 24.56 0.536 0.536
R.VDEDQPFPAVPK.W BGAL ECOLI 80 31.80 0.659 0.658
R.IGLNCQLAQVAER.V + Carboxymethyl (C) BGAL ECOLI 90 37.36 0.753 0.751
R.KTGQAPGFSYTDANK.N CYC BOVIN 75 21.99 0.493 0.493
K.TGPNLHGLFGR.K CYC BOVIN 61 33.16 0.682 0.680
R.EDLIAYLK.K CYC BOVIN 44 40.06 0.798 0.796
R.HGLDNYR.G Lysc chick 40 14.89 0.373 0.373
R.NTDGSTDYGILQINSR.W Lysc chick 110 36.05 0.730 0.729
K.LCQLCAGK.G + 2 Carboxymethyl (C) TRFE BOVIN 56 23.50 0.518 0.518
K.ELPDPQESIQR.A TRFE BOVIN 53 28.00 0.594 0.594
K.DKPDNFQLFQSPHGK.D TRFE BOVIN 56 29.51 0.620 0.619
K.HSTVFDNLPNPEDR.K TRFE BOVIN 80 32.67 0.673 0.672
K.TYDSYLGDDYVR.A TRFE BOVIN 77 34.33 0.701 0.700
K 6
K 9
K 3

4

s
a
t
p
e
e

.CACSNHEPYFGYSGAFK.C + 2 Carboxymethyl (C) TRFE BOVIN 6

.SVTDCTSNFCLFQSNSK.D + 2 Carboxymethyl (C) TRFE BOVIN 10

.CGLVPVLAENYK.T + Carboxymethyl (C) TRFE BOVIN 8

. Conclusions

Our results demonstrate the feasibility to calibrate any HPLC
ystem working within a range of experimental parameters in such

way that RT data can be standardized to a scale independent of

he separation conditions and/or instruments. The standardization
rocedure is based on the assumption that in a broad range of
xperimental conditions there is a linear correlation between
xperimental LC data. This assumption is a direct consequence
36.56 0.739 0.738
40.75 0.810 0.808
40.83 0.811 0.809

of the mechanism behind the biomacromolecules separation in
gradient RP-HPLC and has been verified here for a variety of C18
and similar columns and LC protocols, common in proteomics
experiments. Using sequence-dependent RT prediction tools, a

standard RT scale can be generated, which is invariant to the
experimental conditions, separation protocols, or instrument
platforms. We propose to tie up this RT scale to a standard tryptic
peptide mixture of Cytochrome c digest. The standard RT scale can
be normalized for convenience by assigning the 1.0 value to the
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redicted retention time for the 12th peptide from this digest. After
he RT scale is generated, the experimental data for complex pep-
ide mixtures can be transformed into this time scale using a linear
unction. The coefficients of this function can be obtained from
he calibration of the instrument used and particular experimental
onditions by RP-HPLC run for the standard peptide mixture.

We have found that using the suggested procedure the standard-
zed RT for experimental LC data can be obtained with a relative
ccuracy of less than 1.2%. This standard RT scale can be useful in
MT tag database generation requiring extensive and prolonged
ollaborative efforts. Moreover, it could allow users to tap data
epositories for peptide identifications and use them to construct
MT tag databases.
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